skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeoung, Sullam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When students reflect on their learning from a textbook via think aloud, network representations can be used to capture their concepts and relations. What can we learn from these network representations about students’ learning processes, knowledge acquisition, and learning outcomes? This study brings methods from entity and relation extraction using classic and LLM-based methods to the application domain of educational psychology. We built a ground-truth baseline of relational data that represent relevant (to educational science), textbook-based information as a semantic network. We identified SPN4RE and LUKE as the most accurate method to extracting semantic networks capturing the same types of information from transcriptions of verbal student data. Correlating the students’ semantic networks with learning outcomes showed that students’ verbalizations varied in structure, reflecting different learning processes. Denser and more interconnected semantic networks indicated more elaborated knowledge acquisition. Structural features such as the number of edges and surface overlap with textbook networks significantly correlated with students’ posttest performance. 
    more » « less